University of California, Berkeley Physics 110B Spring 2001 Section 1 (Strovink)

Problem Set 7

- 1. Starting from the elements of $F^{\mu\nu}$ as given in PS 6 Problem 7, apply the metric tensor (twice) to find the elements of $F_{\mu\nu}$.
- **2.** Define the contravariant field-strength tensor F and the contravariant dual field-strength tensor \mathcal{F} by

$$F^{\mu\nu} \equiv \partial^{\mu} A^{\nu} - \partial^{\nu} A^{\mu}$$
$$\mathcal{F}^{\mu\nu} \equiv \frac{1}{2} \epsilon^{\mu\nu\rho\sigma} F_{\rho\sigma} ,$$

where $\epsilon^{\mu\nu\rho\sigma} = 1$ for $\mu\nu\rho\sigma = 0123$ or any permutation of 0123 that is achieved by an even number of interchanges of adjacent indices; $\epsilon^{\mu\nu\rho\sigma} = -1$ for $\mu\nu\rho\sigma = 1023$ or any other permutation of 0123 that is achieved by an odd number of interchanges of adjacent indices; and $\epsilon^{\mu\nu\rho\sigma} = 0$ otherwise. By explicit calculation, show that the elements of $\mathcal{F}^{\mu\nu}$ can be obtained from those of $F^{\mu\nu}$ by changing \mathbf{E} into $c\mathbf{B}$ and $c\mathbf{B}$ into $-\mathbf{E}$.

- 3. By explicit evaluation, show that $\mathcal{F}^{\mu\nu}F_{\mu\nu}$ is proportional to $\mathbf{E} \cdot \mathbf{B}$, and find the constant of proportionality. (Because $\mathcal{F}^{\mu\nu}F_{\mu\nu}$ is obviously a Lorentz scalar, the Lorentz invariance of $\mathbf{E} \cdot \mathbf{B}$ is therefore said to be manifest.)
- 4. The two source-free Maxwell equations are equivalent to the single manifestly Lorentz-invariant equation

$$\partial_{\mu}\mathcal{F}^{\mu\nu}=0$$
.

Without making any reference to Maxwell's equations, using only formal manipulation, show that \mathcal{F} has this property (i.e. its four-divergence vanishes). [Hint: Write $\mathcal{F}^{\mu\nu}$ in terms of $\epsilon^{\mu\nu\rho\sigma}$ and $F_{\rho\sigma}$. Then write $F_{\rho\sigma}$ in terms of $\partial_{\rho,\sigma}$ and $A_{\rho,\sigma}$. Finally, make use (twice) of the behavior of $\epsilon^{\mu\nu\rho\sigma}$ under interchange of adjacent indices.]

5. Is it possible to have an electromagnetic field that appears as a purely electric field in one inertial frame and a purely magnetic field in the other? What criteria must (uniform nonzero) **E** and **B** satisfy such that there exists an inertial frame in which the electromagnetic field is purely magnetic?

- 6. An infinitely long straight wire of negligible cross-sectional area moves in the \hat{x} direction (parallel to its length) with speed βc relative to the lab. As observed in its rest frame, the wire carries a uniform linear charge density λ Coulombs/meter; in that frame, those charges are at rest. In the lab, write the elements of the field strength tensor at the point (0, y, 0).
- 7. Consider a relativistic particle of mass m and charge e that accelerates in a uniform, static electric field with magnitude E (there is no magnetic field). At t=0 the particle is at rest. Solve for $\eta(t>0)$, where $\eta \equiv \tanh^{-1}(\beta)$ is the particle's boost parameter or "rapidity".
- 8. Consider a relativistic particle of mass m and charge e that is in helical motion under the influence of a constant magnetic field of magnitude B (there is no electric field). Its momentum component in the direction of the magnetic field is p_0 . Show that the cyclotron angular frequency of this particle is

$$\Omega = \frac{eB}{\gamma_{\perp} m_{\text{eff}}} \; ,$$

where

$$\gamma_{\perp} \equiv \frac{1}{\sqrt{1 - \beta_{\perp}^2}}$$

$$m_{\text{eff}} \equiv \sqrt{m^2 + p_0^2/c^2} ,$$

and $c\beta_{\perp}$ is the component of the particle's velocity that is perpendicular to the magnetic field. (That is, the transverse motion of a particle that moves in a helix is the same as that of a heavier particle that moves purely in a circle.)